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ABSTRACT

Understanding reliability is critical in design, mi@nance and durability analysis of
engineering systems. A reliability simulation metbtwgy is presented in this paper for vehicle
fleets using limited data. The method can be usezktimate the reliability of non-repairable as
well as repairable systems. It can optimally altecébased on a target system reliability,
individual component reliabilities using a multijettive optimization algorithm. The algorithm
establishes a Pareto front that can be used fomaptradeoff between reliability and the
associated cost. The method uses Monte Carlo gl estimate the system failure rate and
reliability as a function of time. The probabilidensity functions (PDF) of the time between
failures for all components of the system are estuh using either limited data or a user-
supplied MTBF (mean time between failures) anadasfficient of variation. The reliability-cost
tradeoff analysis utilizes a user-supplied relalop between reliability and cost for each
component. The tradeoff can be used to optimaltgrdane the reliability of each component in
order to maximize the system reliability and sirantously, minimize the acquisition and repair
cost for the system. A detailed example highlights methodology and demonstrates its main
features.

1. INTRODUCTION

System reliability analysis is critical to desigmeventive maintenance, availability and
maintainability through time [1]. Better reliabilitis usually achieved through better design,
better materials or improved manufacturing methaad usually results in an increase in cost.
The designer (or the end-user) must take this afddeto consideration. In addition, system
level reliability targets are usually provided andt the reliability targets of the individual
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components. This leads us to the problem of assigoomponent level reliability targets based
on system targets. This problem is referred toediahility allocation. It is obvious that many
combinations of component level reliabilities (dgs) can lead to the same system level
reliability. How do we select a design among thibse best satisfies the end user requirements?
End users are usually concerned with multiple laites which constrain the design space and
help us reduce the number of designs that meetyttem reliability targets. Multiple attributes
however, increase the computational cost of eviagalesigns for fithess to find the optimal
one. Optimization methods should be carefully chose modified to handle this additional
burden. Finally, the methodology for component leediability allocation should incorporate
tradeoff preferences of the end user. It shouldeeitncorporate the end user’s utility function
over the attributesr present him/her with a manageable number of dedigm which the best
one can be chosen based on their tradeoff behavior.

Reliability-cost tradeoffs and component relialyildllocation are important in system
acquisition and logistics as well as in evaluatiregv technologies to meet performance targets.
The particular application we consider in this paisereliability-cost study for vehicle fleets.
Reliability methods in engineering have existed ome time. Analytical methods include the
classical first-order and second-order reliabititgthods (FORM [2], SORM [3, 4]), and multi-
point approximation methods [5]. Integrating religy into a design problem has been studied
under the umbrella term of reliability based desmgptimization (RBDO). The system is
optimized subject to probabilistic constraints whensure a small probability of violation [6, 7].
Optimization in RBDO is performed using either claal gradient based methods or heuristics
like Genetic Algorithms [8]. Time dependence ofakility, is also critical to understanding the
performance of real life engineering systems thdiilst degradation. Very few studies have
investigated the interplay of reliability allocatian engineering design, time dependence of
reliability and cost tradeoffs associated with @asing reliability.

In this paper we implement our methodology on @&esesystem. It is equally applicable
to reparable as well as non-reparable systemsdé&amonstration purposes, we assume that a
component failure mileager time is a Beta distributed random variable [@is does not limit
our discussion because the family of Beta distiimst exhibits a lot of flexibility in modeling
different types of distributions. For a given udehileage, the mean value, standard deviation,
failure counts and reliability of a component canamalytically obtained. However, the system
reliability depends on the layout of the compongmrisd may be generally estimated using
Monte-Carlo Simulation (MCS). The unit cost of amgmwnent is assumed to exponentially
depend on the mean time between failures (MTBF)enthie coefficient of variation is assumed
constant.

The main contributions of this research are: theeligpment of a methodology for multi-
objective optimization to enable reliability-costadeoffs and to decide target component
reliability for a series system. The method carekiended to non-series system using fault tree
analysis for example, to define system failure.

! Mileage can be a better measure of “time” for eiyst that are not constantly in operation, suchwehile.
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2. MODEL DESCRIPTION
2.1. Component Level Reliability Assignment

If the failure modes of a system are knoaomponent level reliability maps directly to
the system level reliability as shown in Figurd'he number of ways component level reliability
can be chosen (designs) for a system composedanfi@ number of components is very large.
As shown in the figure, foN. components, each havimg. variants (subscripi; stands for

component number), the set of all designs is a eSmm product of Rf,'s where

Ry, D{R1'°R'2°Rr'§} and Ry represents the reliability of them, variant of theic”
component. Each of these designs can map to ansystel reliability using the failure mode
information embedded in the functiorfal and the mapping is a surjection, i.e. for eacsifde
system level reliability target there is at lease aesign. However, more than one design can
result in a given system reliability level. Thenefpthe inverse problem of “given a system

reliability target, allocate component level relldi®s” does not have a unique solution. As we
will see later in the paper, the addition of thgegbve of cost helps us alleviate this issue.

Designs System Reliability
Targets
4 )
F(RC,) ——
— RC;. [ RlAn . Rin X... X R:f
Ry OW\R° RS ,..., Ry
F(RCk) . All {Rle 2 |c}
/ Nd%ign = I_—|1 rnic
Flre.,)
%

N

Figure 1. Mapping of component level reliabilities into syst level reliability

2.2 System Description

Assume that there is a systemNgfcomponents, which are numbered using 1, 2, ...,
N.. We also assume that this system is a seriesragpaisystem so that any failure in a
component results in a system failure. The failechgonent can be replaced using a brand new
component of the same make, as shown in Figure 2.
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Comp1l Comp2 Comp3 Comp CompN¢

Figure 2. A series system layout

We further assume that the system begins serviderusimilar operational conditions
with all brand new components and the miledgg set to zero. For a given system in service,

when a component fails, we record the componenicind the odometer mileage reading
(M j )i for that component. The mileage between failurd&HTis then equal to

d(Mj)i :(Mj)i _(Mj—l)ic' @)

[

The failed component is then replaced with a braed one and the system resumes its regular
service. This procedure continues until the odometdeage reading for the specific system
reaches a given threshold vaMeesnoig Data acquisition for this system is then stopgpegure

3 shows our notation with the component ID dropfeedimplicity.

Miailed

A
A 4

oM, M, | v

A
A 4
A
A 4
A

»
>

v

Mo M1 M;.1 M; ML Minresnold Mtailed

Figure 3. A sorted component failure odometer mileage reading

In Equation (1) and Figure 8= 1, 2, ...,L is the failure sequence number for the given
component.L is the total number of component failures beforel @t the threshold value
Minreshoid fOr the specified component in a systevy = O is the beginning odometer mileage
reading andM_ is the maximum component failure mileage odometetimer reading, before
the censoring mileagéViinreshoa  Obviously, the recorded component failure dae réght-
censored at the threshold mileage.

The (+1)* component to replace the malfunctiorgli component does not fail at or
beforeMinresnoid (SUrviving component) but would fail at the odometer miledygeq beyond the
threshold valudieshoiif the data were not censored. The1)* failure mileage of component
ic given by

dM tailed)ic =d(M L+1)iC =(M taned)iC -(M L)ic (2
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is not known from the recorded component failure datatdad, the surviving component
mileage can be retrieved as

dM s)iC =M reshos — (M )ic €))

representing the used mileage/time of thel)* component at the threshold mileage/time
Mthreshold

Notice that there are cases that
dM s)iC = M threshold (4)

indicating that in the component data acquisitisocpss, some components have no failure
records at all. This missing information shouldibeluded in the surviving component data to
make up a total dils,ni= Nc surviving components for a system. The first fi@almileage of the
system is defined and obtained as

M, =min(M, )

_=min(dM,) (5)

for i(; =1, 2,...Nc

This data acquisition procedure may be appliedfteet of Ns systems of the same make
and model, or the simulation may be repeated fer ghme systeniNs times. Then, the

corresponding recordgvi j):i’ (dm j):; for component,, are obtained and

(M, )* =min(m, )

: = min(dMl):z (6)

foris=1,2, ....Ns, ic=1,2, ....N;, andi = 1, 2, ...,(L);:. It should be noted that a complete
set of system failure data samples can be obtdinadactual data or simulations.

2.3 Data Sorting and Parameter Estimation

The originally recorded component failure datarare data that are usually in a random
order and cannot be used directly. Therefore, thegd to be sorted according to the priority
order of the system or simulation numbgr 1, 2, ...,Ns =N, followed by the component

serial numberc = 1, 2, ...,Nc, and then by the failure sequencel, 2, ""(L):i :

For a specified component of a specified systesimulation, the sorted component
failure odometer mileage readings in ascendingesacp) is given by

M0:O<Ml<"'<Mj_1<Mj<"'<M|_<Mthreshold' (7)
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Note that the component failure odometer mileagedirg M; is related to the component
mileage between failures (TBF) as

j
M;=>dMm, for j=12..L,L+1. (8)
k=1

We assume that the mileage between failures (THFallocomponents is a Beta
distributed random variable of the same param¢®eid]. The Beta distribution is used because
of its flexibility to model a wide variety of probdity distributions. In this case,

dM, = X, ~ B(AB,p,q), (A<X, <B,andp>0,q>0) 9)

The probability density function (PDF) of the Beliatribution is given by,

(A B, paka(pa) (- (B (B~ A )
(A< x<B,andp>0,q>0)

and its cumulative distribution function (CDF) is
F()=P(X, <x)= [ f(t,AB, pq)t. (11)
In Equation (10), the Beta functiq&(p,q) is associated with the Gamma functioas,

Blp.akT (p)r(a)/r(p+a) (12)

and appears as a normalization constant to ensatr¢hte probability in Equation (11) integrates
to unity whenx — o . The standard Beta distributed random variables the special case of

the general Beta distributed random variaflewhen A=0 and B =1, i.e.,

Y, ~ B(01, p,q). (13)
where
X, = A+(B-A)Y,. (14)

In Equations (9-11, 14A andB are the lower and upper bounds of the random biaria
X, andp andq are the shape parameters. Figure 4 shows thelpligbdensity function (PDF)

and the corresponding cumulative distribution fiorct(CDF) of a component failure mileage
for parameteré = 0,B = 45,000 milesp = 3, andg = 5.
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Figure 4. PDF and CDF of a Beta distribution

If we have a total oNg failure mileage data points, i = 1, 2, ... Ng the sample mean

Ne Ne
and the sample standard deviation are Niz x, and o = \/Ni (xi
F

F i=l i=1

__u—-A
H B-A
and
_ o
g=—,
B-A

the method-of-moments provides the shape paranetardq as [10],
(pQ-u
o= ﬂ(ﬂ(_zﬂ) _1}
o

R =

- u)’ , respectively. If

(15)

(16)

(17)

If A andB are known or if we have a good initial estimatéhwincensored samples, the
explicit form method of Equations (15-17) can besdigo estimatep and g. It is difficult
however, to have a good initial estimate of paramsed andB. Furthermore, the component
failure data are usually heavily censored. In tlaise, the maximum likelihood estimation (MLE)
method, which includes thBlsyni surviving mileage samples, j = 1, 2, ...,,Nsuni for the
component surviving mileages, can be used to estifaB, p, andq [12] by maximizing the

following likelihood function,
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L=T]f(xABpa)[][-F(s.ABpa). (18)

1=1 =1
Conversely, if the Beta parametésB, p, andq are available for a component, the mean

valueu , and standard deviatiom can be calculated as,

1= A+(B-A—F (19)
p+q

and

5 -(B=A [ pq

) (20)
p+q \p+q+l
A coefficient of variationrCOV can be then defined as
cov=2 1)

U

The mean valug, the coefficient of variatiol€OV, and the maximum possible failure

mileageB are more physically meaningful than the Beta patamsA, B, p, andqg, and therefore,
are preferred in our discussions in the remainfiéheopaper.

2.4 System Reliability Simulation

A system reliability simulation evaluates the systeliability with respect to mileage. In
a continuous case, timen-repairable system failure rate is defined as

(22)

where f(t) is the probability density function (PDF) of theé to system failure anE(t) is the
cumulative distribution function (CDF) of the tine system failures, calculated by

Fit)=[ f(tht. (23)

The system reliabilitiR(t) is given by

R(t)=1-F(t). (24)
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Let all simulated failure data being distributedepwn bins of a constant widtht

representing mileage (Figure 5). The total numbbdaitures over then bins is

Number of failures

bin
EIREEE ]

t

mileage or time
Figure 5. Histogram of failure data

f =
"N, At
and
i-1 i-1 Nf_ i-1 va
F =Y fAt= LAt=Y —L,
respectively. The failure rate for hirs then provided by
_ _ N
Ai = f' = _f' = ' fi ,
1-F i1 ij

s

j=1 Nt

i-1
(Nf -2 N, JAt
j=1

and the cumulative failure rate is
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H, :Zi:AjAt. (29)

=1
The system reliability is then estimated by

i-1 N
R=1-F =1-) —" (30)
j=1 Nf
or equivalently by

R —e M, (31)

It should be noted that Equations (22) to (31)\adéd for non-repairable systems (first
failure problem). However, they can also provide approximation of the reliability for
repairable systems as well. In this paper, we useteg for terms as “PDF”, “CDF” or
“reliability,” as a reminder that the correspondiggantities are approximate for repairable
systems. Our notation for the first failure probjeschanged tdN,, for N; , Ny for N¢, f;

for f,, F; forF, A, forA, H; for H;, andR; for R.

2.5 Reliability-Cost Pareto Front

A Pareto front represents the tradeoffs that mesilade in a design-decision problem
among multiple objectives (attributes) indicatitgttimproving all attributes simultaneously is
not possible. The Pareto front in this study preséradeoffs between reliability and cost. Its
shape gives information on how much additional t®sieeded to increase the system reliability
by a specified amount. Figure 6 illustrates thepshaf the Pareto front for a hypothetical system.
The ideal case is to simultaneously increase riétiabnd reduce cost. The utopia point provides
the best such scenario but it is not always atbtdénal he Pareto front separates the reliability-
cost domain into infeasible and feasible sub-domaind provides the most efficient tradeoff
strategy.
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Figure 6. Pareto front between system reliability and ass$ediaost for a hypothetical
system

In this paper, a heuristic multi-objective optintina strategy is used to estimate the
Pareto front between reliability and the associatest. To initialize, random points in the design
space are generated, evaluated and mapped in@oteReliability space. To efficiently obtain
the Pareto front, we evaluate design points onthiwicontrolled local domains. Because these
local domains are not knowapriori, they can be determined adaptively if random oare
evaluated one by one. The determination of thel Idomains in the design space is addressed
later in the paper. For computational purposesdiseretize the reliability vertex by defining
horizontaldlices in the Cost-Reliability space. We then assume ttheevaluated point with the
minimum cost within a slice defines a vertex of #ygproximate Pareto front. The latter is
assumed having one vertex per slice.

Figure 7 helps illustrate the local domain andirstjicscheme that maps a random design
pointx = (X, Xz, ...) in one of then- 1 (m= 6 in Figure 7)ocal domains to a (CodR) point in
the Cost-Reliability space whemeis the number of break points that divide theat®lity range
[0 1] into m1 slices (local domains). A diamond marker is usedepresent the vertex of the
Pareto front and a circular point to represent rodlesigns.

We assume that only the inn@¥3 slices, bounded by the reliability valusareto, and
paretoy, are of equathickness. The values opareto. andparetoy are dynamically determined
by the current minimum and maximum reliability vedRmqi» andRnay respectively, among all
evaluated designs (circular and diamond markefsignre 7) that are mapped from the design
spacex into the Cost-Reliability space.
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Figure 7. A schematic diagram to illustrate slicing schemefifading the approximate Pareto
front

Assuming that the evaluated points that correspoi,, andRnax are always within the
bottom and top slices respectively, the relation

anin < paretOL < paretou < Rmax (32)
holds. We determine th@reto, andparetoy values from
pareto, =R, +J; and pareto, =R, — Oy (33)

whered, is aprescribed small positive real number satisfying

0< 5 <5 (Rmax Rmin ) ' (34)

Thethickness of thei ™ slice is then provided by

1- pareto, for i=m-1
thickness(i) = (pareto — pareto,) for 2<i<m-2 (35)
pareto, for =

and the ™ break point is determined by
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1 for i=m
break(i) = { pareto, +thickness(i 1) for 2<i<m-1. (36)
0 for =1

Equations (32) to (36) determine the Pareto sllwesed on the current minimum and
maximum reliability valuesRmin andRmnax among all evaluated points. If the reliabilityahew
point is between the curreni, or Rnax the definition of Pareto slices remains the same;
otherwise the Pareto slices are re-initialized.

A number of local domains are defined in the dessgace so that a design point
generated in the design space can be mapped gmimtain the Reliability-Cost performance
space which is nearby the current Pareto fronthis case, the number of design points to be
evaluated will be drastically reduced improvingréfere, the computational effort. As seen in
Figure 7, a local domain in the design space cpomds to only one slice in the Cost-Reliability
space. The center point of the local domain indésign space corresponds to the vertex of the
current Pareto front within the corresponding sliBefore any Pareto front vertex is calculated,
we assume that each local domain in the designespacers the entire design space (global
domain). As a Pareto front vertex is first calcethor updated during the algorithm, the center of
the local domain in the design space is updatedtangize of the local domain is reduced (e.g.
by 15% or 20%). It should be noted that the contprtal effort to obtain the Pareto front will
not be reduced until every slice contains at least evaluated point. If a slice does not contain
an evaluated point (calculated Pareto front vertekle global domain serves as the
corresponding local domain in the design space, amggnerated random point in the global
domain can be mapped onto any of the Pareto fiagssreducing the probability of being
mapped onto the slice with no point in it. In tltiase, we cannot efficiently use randomly
selected design points to estimate all segmerttsedPareto front.

The algorithm to calculate the approximate Paretatfis described using the following
steps.

Step 1 Assign initial values.
ipointzO;
Rmin=1,;
Rmax=0;
pareto. =0.5;
paretoy =0.51;
Size ofi" local domain equals size of global domain for 1,...m-1. The size of
a local domain will be reduced to 20% of the glatbatnain size for = 2,...m-2,
and to 15% of the global domain size ifer 1, m-1, when a point in it is a mapped
onto a Pareto front slice.

The above initial values are assigned before arsyjgdepoint is evaluated because the
conditions for initializing the Pareto front usifgjuations (32) to (34) cannot be checked and the
local domains in the design space are not knaymori.

After the first design pointifin:= 1) is evaluated, the values Rf;n andRnax are equal.
After the second design poinpdn:= 2) is evaluated, the conditidhin < Rmax is satisfied if the
reliabilities of the two points are different. Aftesubsequent points are evaluatggn(> 3), the
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condition Ryin < Rnax can be guaranteed. Based on these observationsplibstness of the
algorithm is enhanced by using Equations (35) &) (@ith pareto, = 0.5 andparetoy = 0.51 if
ipoint< 3 to define the Pareto slices. Otherwise, theififilalization scheme of Equations (32) to
(36) is used.

Step 2 Find a new design point to be evaluated.
Keep generating random points in the design spatieaudesign poink falls in
one of than-1 local domains. Note that no design point is eagdd until it falls
within one of the local domains. No reduction inmpuutational effort is achieved
until the size of all local domains is reduced fridra original global domain size.

Step 3 Evaluate the new design point.
Setipoim: ipoint"'l;
Evaluatex to obtain the (CosR) value.

Step 4 UpdateRin andRmax
|f Rmin < Rl theanlnz Rl
If Rmax >R, Rmax=R.

Step 5 Update the Pareto front.
If ipoint< 3, then:
Update the Pareto front using the newly ada®atp,oins,
Else If ipoint > 3, then:
If Rmin < (pareto,. —thickness), then:
pareto, = Rnin —dr; (0r=0.05)
Initialize the Paredices using Equations 35-36;
Update the Pareto front using all evaluateidtpo
Else If Rnax < (paretoy + thickness), then:
paretoy = Rnax + dr; (0r=0.05)
Initialize the Paredices using Equations 35-36;
Update the Pareto front using all evaluateidtpo
Else
Update the Pareto front using the newly aqu®at iyoint.
End If
End If

Step 6 Stop if the algorithm converges; otherwise, g&tep 2.

The diamond marker in Figure 7 indicates the pwiitth the minimum cost value among
all ipeine points within a slice. Therefore, the completee®afront is a polygon that connects the
m-1 diamond markers. The reliability-cost Paretbrsseds the evaluations of both the system
reliability and the system cost. The system rdiighis evaluated using Equation (30) or
Equation (31).
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2.6 Definition of Design Variables

In Sections 2.2 and 2.3, we described how to usaladble data to estimate the
probabilistic distribution (PDF) of time (or mileagbetween failures (TBF) of each component
in a system using the family of Beta distributioe PDFs of all components are then used to
estimate the system reliability using Monte Cartowgation. The four parametera, (B, p andq)
needed to define a Beta distribution are usuallyneged if we know the first four moments of
the available data (mean, standard deviation, s&ssvand kurtosis). Such an estimation may not
be accurate however, if we only have limited d&ta.this reason, we proposed an estimation of
the Beta distribution parameters using only thenmreead standard deviation (see Equations 15 to
17).

Because it is common in practice to describe corapboreliability using only the MTBF,

we assume in this paper that the coefficient ofatimn COV = %l Is constant, allowing us to

calculate the standard deviation if we know the m&¥e also assume that tiBg_., where

B

factor

=B/u =B/ MTBF (37)
is constant, resulting in

B = Bfactorl'l = Bfactor MTBF (38)

In this case, Equations (15) to (17) or Equatidi®) to (21) can be used to estimate the four
parameters of the Beta distribution using only M&BF. The latter will then be the only
independent design variable for each component.

2.7 Reliability-Cost Relation for Each Component

In order to calculate the Pareto front as describe8ection 2.5, we must know how
component reliability and cost tradeoff. In thisppg we consider the following exponential
relationship between component acquisition costitsel TBF

cost= cost, K (MTBFIMTBF, -1) (39)

wherek is a cost growth constant which is used to accéamtifferent possible relationships
between MTTF and cost. It is given by

k =In(cost / costy)) /(MTBF/MTBF, -1). (40)
In Equation (40), costrepresents the unit cost to achieve a reliabiityvided by MTBF, and
cost represents the unit cost for MTBHLt is clear that cost is an increasing functidnthe

MTBF as shown in Figure 8. The relationship is uasdn interpolation tool between different
component variants, which in practice are discretkies of cost and the associated MTBF.
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Although the chosen functional form is a good agpnation, it does not limit our methodology.
Other cost-MTBF relationships can be easily acconated.

Unit Cost

cosy

cost,

MTBF
MTBF, MTBF,

Figure 8. Component cost versus MTBF

Then, for a system ®c components, the system cost is provided by

Ne
Cost=)" [cosg g MTEFMTBRD (1 + failure counts}

ic=l

(41)

Ic

It should be noted that the failure count for eecimponent in Equation (41) can be obtained for
both a non-repairable system and a repairablerayste

3. EXAMPLE

The approach presented in Section 2 for systemrebability simulation and Pareto

front generation is demonstrated in this sectiomgu® mechanical system consisting of 15
components that are serially connected. The timdailure for all components are statistically
independent and Beta distributed. We consider #ségd of only components 7, 8, 9 and 10,
assuming that we actually control their MTBF. Tatilgorovides the component data for the
system, including the nominal (subscript 0) meanetibetween failure, the coefficient of
variation, the ratio of maximum failure time to timeean time between failure8or, in
Equation 37), the nominal unit cost (cost of initi@sign - cost in Equations 39, 40), and the
cost growth constank(in Equations 39, 40).

Table Lomponent data for the mechanical system
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Component |BaselineMTBF in hours| Coefficientof | By, |Baselinecost
Number (MTBFy) Variation (Costy)
1 4076 0.3 3 $27,500.0( 1
2 15000 0.3 3 $7,000.00 1
3 26510 0.3 3 $3,000.00 1
4 40000 0.3 3 $5,000.00 1
5 18000 0.3 3 $5,000.00 1
6 8000 0.3 3 $500.00 1
7 31809 0.3 3 $22,500.00 1
8 9520 0.3 3 $30,000.0( 1
9 9713 0.3 3 $12,500.0( 1
10 2330 0.3 3 $20,000.00 1
11 40000 0.3 3 $27,500.00 1
12 8614 0.3 3 $1,000.00 1
13 45000 0.3 3 $30,000.00 1
14 20000 0.3 3 $3,000.00 1
15 25000 0.3 3 $15,000.00 1

A complete set of system failure data samples tainéd using simulation as described
in Section 2.2. The system threshold time and atetthreshold time for the data collection are
five and one times respectively, the minimum of tm@aximum failure times of all 15
components.

The time to first failure and all subsequent faltimes up to the system threshold time
are recorded for 4000 simulations and used foesyseliability calculations based on Equations
(25) to (31). The specified useful time for religlgicalculations is 2500 hours. The component
and system cost are calculated using Equationst¢3@)1). The simulation results are presented
below.

Figure 9 shows the repairable system failure fraquelistribution over 20®ins of a
constant bin width ofAt = 35 hours over the system truncated threshold ¢ih&®90 hours.
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Figure 9. Histogram ofsystem failures

Figure 10 shows the “PDF” using Equation (26) fothbthe repairable system failure
data (f in the figure) and the system first fagludata (f1 in the figure), as well as the Beta
distribution fitting of the repairable system fagudata using the maximum likelihood approach
of Equation (18). It should be noted that the “PD&i" a repairable system as calculated using
Equation (26), is not a real PDF because the fmibomponents are replaced with brand new
ones after failure. It simply provides a measurehaf frequency of failures for a repairable
system.
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Figure 10. “PDF” comparison

Figure 11 compares the repairable system failuie Aawith the failure rated lusing
only first failure data. As expected, the failueter of the non-repairable (first failure) system is
higher than the failure rate of the repairable ayst
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Figure 11.System failure rate comparison
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Figure 12 shows the cumulative distribution funct{tCDF”) and the cumulative failure
rates (H) using repairable system failure datav@esi= and H) and the first failure system data
(curves F1 and H1). The “CDF” curves F and F1 adewated using Equation (27) and the
cumulative failure rate curves H and H1 are catedausing Equation (29). As expected, the
results are drastically different between the neggidé and non-repairable systems.
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Figure 12. “CDF”/H comparison

Figure 13 compares the reliabilities calculatedBoyations (30) and (31). As expected,
both equations provide the same reliability resulitse RF (Equation 30) and RH (Equation 31)
curves (repairable system) and the RF1 and RHlesufwon-repairable system) are identical.
However, the reliabilities are different betweea thpairable and non-repairable systems.
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Figure 13. System reliability comparison for repairable awdepairable systems
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Figure 14 shows the first failure count per sys&mulation for each component and
Figure 15 shows the corresponding cost for eachpoornt from Equation (39). Although most
of failures per system simulation are recordedctomponents 10 and 1 (Figure 14), the expected
cost from all failures is high for components 18710, 11 and 13 (Figure 15). This is due to the
relatively high component cost for components 8,7,0, 11 and 13 (see Table 1).
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Figure 14. First failure counts for each component per systemulation
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Figure 15. Total cost for each component per system simulation

Finally, Figure 16 shows the cost versus systembiity Pareto front using first failure
data. Among the 15 components, only components 9,ad 10 are designed. A total of 250
system design points were used to generate théoHewat considering only 7 slices. The multi-
objective optimization strategy presented in Sec®db asymptotically approaches the Pareto
front between reliability and associated cost. Plageto front can be presented to the end user
who can then select the best point on the fronédbas his/her tradeoff preferences. For each
point on the Pareto front, we have an associatstulan terms of target component level
reliabilities and costs which would result in theap system reliability and cost.

It is observed from Figure 16 that there is a tslgipe region where the reliability can be
significantly increased with a small increase irstcdrhis indicates that we can increase the
system reliability with a very small increase irsto
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Figure 16.System reliability-cost Pareto front

4. SUMMARY AND CONCLUSIONS

Reliability analysis is critical to understandidgetdesign and maintainability of complex
systems. In this paper a simulation based reltghlbst modeling capability was formulated and
presented. The methodology accomplishes two things:

1) System Reliability-Cost Simulation: The metha@sithe Probability Density Function
(PDF) of the Time Between Failures (TBF) for eaomponent of the system. The user supplies
a MTBF and a Coefficient of VariatiofCQV) for each component, and the presented approach
calculates the component PDFs/CDFs of the timesdmet failure. Subsequently, a Monte Carlo
simulation estimates the system failure rafg), and the reliability,R(t), as a function of time.

The number of failures for each component is aloutated and the associated cost to replace
failed components. The latter is used to calculagerequired cost for a desired reliability level.

2) Generation of Reliability-Cost Tradeoff: A rddifity-cost tradeoff analysis is
performed using a user-supplied relationship betwedability and cost for each component.
The reliability-cost tradeoff is used to optimatlgtermine the reliability of each component in
order to maximize the system reliability and siran#ously minimize the acquisition and repair
cost for the system. A heuristic multi-objectivetiopzation algorithm has been developed to
calculate the Pareto front between reliability asdociated cost.

An example of a mechanical system of 15 seriallgnexted components was used to
illustrate the methodology. The example clearlyhhghted the differences between repairable
and non-repairable systems in terms of PDFs of beteveen failures, and failure rates. It also
demonstrated how the proposed method can be ussffidiently generate the Pareto front for
Reliability-Cost tradeoff, which the end user stdethe best design from. Each point on the
Pareto front is mapped to a target component-lmtebility and cost which result in the given
system level reliability and cost.

The presented work can be easily extended to a@efmt serial) system where a fault
tree for example, can define the system failureghis work, we assumed that the reliability-cost
relationship is explicitly known. Future work catteanpt to further understand this relationship
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and accommodate the effect of uncertainty. Finalig, Pareto front analysis can be carried out
using other than the reliability and cost attrilsute
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